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A ONE-DIMENSIONAL TRANSPORT CODE FOR FIELD-REVERSED CONFIGURAT!ONS*

E. J. Caramana, M.-Y. Hsiao, and J. L. Schwarzmeier
Los Alamos National Laboratory
Los Alamos, New Mexico B7545, USA

A radial transport code for Field-Reversed Configurations (FRCs) is
described. Assuming quasi—neutrality and neglecting inertia and viscous force,
the evolution of particle densities, temperatures, and magnetic field through a
series of equilibrium states is simulated. To solve the equations,
transformations of all dependent variables and the one independent variable are
carried out. The processes of interest cen be decoupled into two distinctive
sets of equations that describe adiabatic and nonadiabatic processes. These
sets of equations are then solved by two alternating steps: adiabatic and
nonadiabatic. (

Consider the FRC meagnetic field geometry given in Fig. 1. Shown is a
cylindrical (r.,9,2) coordinate system where we delineate regions I, 11, end 111

by ro: the radial location of the field null, r the radial location of the

separatrix, and r the position of the wall. We make the approximation of

w'
straight field lines so that the magnetic field has one component “‘hat depends
on r only. In addition we “slave” regions | and I! by identifying radial
positions with the sanc magnitude of magnetic flux measured from the field null
as the same field line with the same density and temperature We use a
flux—-type independent variable where this identification becomes automatic.
Although we neglect fieldline curvature, we allow for both changes in the axial
length & (this is necessary to satis{y axial force balance—the average beta
condition) and separate axial energy and particle loss terms. This together
with the requirement that our system of equations have no ‘“explicit” ¥ or 2
dependence ieads to magnetic and velocity fields B and V of the form

B=(00B,(r)) and V= (V. (r),0,V,(r)z). With these spproximations the

Eulerian form of our model becomes: Yo
%
c
F) 2 . . .
M rB, + i V. rB, = ar r o (Ohm's + Ampere's laws), (1)
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P+ Eﬁ = const. (Radial momentum balarce), (2)
L2y LED G 1,2,3 (T
- + -~ - = - - + » i = L L} v -
a3t ar 'rs 1 " . i (Transport) (3a-c)

where ¢, =rn, ¢{, = rT:/(7_l). {y = rT}/(7_1) (n is density; T, and T, are
electron and ion temperatures, y is the ratio of specific heats). The term
ch/en is the nonideal part of Ohm's law! and Si contains all transport and
radiation terms (e.g., thermal conduction, ohmic heating, electron—-ion
equilibration, axial loss, etc.—see Ref. 1). The first term on the
right-hand-side of Eq. (3) is a source term due to exial length change (¢; is
defined per unit lenght). The unknown Vz(z = L) is determined by the average
beta condition (<> = 1 - rg/2 r2).2

Equations (1)-(3) describe evolution through a series of equilibrium states.
Thus, Eq. (2) actually d termines the radial velocity V.. This rather
ponnewtonian system of equations, which is the result of the neglect of inertia,
comes from ignoring the fast timescale associated with the individual forces
and, instead, fellowing the long timescale associated with the time rate of
change of these fcrces that are assumed to be in balance. That the forces in
balance have time denendence induces a convective flow. This neglect of & fast
timescale changes the usually hyperbolic mementum equation into the elliptic
equation (instantaneous correlation of cause and effect) given as Eq. (2), and
is a general feature of such an upp:oxlnation.3

Equations (!)-(3) are most easily solved by a transformation to variebles
that in the absence of dissipation (Ro =S = 0) are adisbatic invariants.
These invariants then evolve in time due to all forms of dissipation. This
"flux variable” representation has beren used previounly.“’s We briefly outline
new features relevant to the FRC.

In the !lux variable procedure, we define y = y(r,t) as y = Zﬂ]r r’B,dr '/yg
(VG - 2nj;° rB,dr, so thet ¥ is n.rmalized to have unit domain tndgpendent cf
flux decay at the field null r =rg). Then, utilizing Eq. (1) to finish
defining the appropriate partial derivatives (Eq. (1) is rewritten to define
VeV, + '(¢i) z 8r/at|v-the velocity of r at fixed y), we transform
Eqs. (2)~(3) from the (r,t) to the (y(r.,t).t) representation. This
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transformation determines the new "adiabatic” dependent varieables and eliminates

v, Thete new variables are found to be £ = & dr/dy. Thus,

¢,ar ¢i%o
& = 2ﬂrBzdr/vo - 2nrB,

and utilizing y = r2/2 in place of r (insures regularity at r = 0) we have
dy/3y = ¥,/2nB, . (el = ndy/3¥, y is proportional to the volume of a flux
surface). Thus ¢, and dy/dy =+ ®» as Bz(r*ro) + 0 at the field null. Examination
of the form of this singularity (¢, * 1/(1~y)1/2 as y » 1) suggests that we
transform the variables y, ¢, to the system n = - (1+)1/2 (-1¢9g0), Eis - nE; .
Now the dependent variables ¢,, dy/dn and the transformed equations written in

terms of these variables are everywhere nonsingular. The system of Eqs. (1)-(3)

becomes

rs =yl -7-1

(3y/3n)7 on3 (3y/9n)2  32n(y,-2y()2
31 fnPm) Mo ErevlTRy
at 3y 2n Yo Ot env, €, =
V,(z = 2) _
S 4 — €& % 5 %% ' i =1,2,3 (5a-c)

In Eq. (4)(pressure balance), which has been written for a vacuum in region 111,
Vyac * vecuum flux, y, = r3/2 and y, = rf/2 = ri/4. Specifying 2‘. Yo Vyac:
Y.+ and a “guess” for yq. Eq. (4), which is an nlgabraic equation for dy/dn, is
solved for dy/3n. A solution is obtained when [ — (8y/9n) dn equals the
guessed value for y;. The second term on the left-band-side of Eqs. (Sa-c) can
be shown to be regular as 7 = 0, and when regions | and |1 are “slaved' this
fjux vanishes at n = 0. To slave these regions, SN B 2y0 =y is used, where

E’ are flux gurface varieoles. Notice that in the ideal limit
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(Ry = S; = dy/3t = 0) Eqs. (4)-(5) reduce to a simple form where no convective
terms are present (EqQ. (5) decouples from Eq. (4)).

After writing the explicit form of Eqs. (4)-(5) in an appropriate manner we
separate the various terms in Eq. (5) into either convective, diffusive, or
adiabatic in character. First, we advance a time step by solving Eqs. (4)-(5)
keeping the convective and diffusive terms in Eq. (5). Second)y, we advance
Eqs. (4)-(5) keeping only the adiabatic terms (sources sn¢ sinks) in Eq. (5).
This completes one time step. In the first part Eqs. (4)-(5) are solved using a
predictor—corrector method where Eq. (5) 1is implicitly differenced in block
tridiagonal form.

Region 111, the open field region, will not always be a vacuum region. In
the latter case a separate flux variable is defined in this region and
Eqs. (1)~(3) are appropriately transformed. (In this transfcrmation it is
important to use the fact that a(jgsrBzdr)/at = 0.) We then require the
continuity of the flux of all quantities at the separatrix.
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Fig. 1 FRC geometry.



